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Dielectric function and electrical dc conductivity of nonideal plasmas

G. Röpke
FB Physik, Universita¨t Rostock, 18051 Rostock, Germany

~Received 2 October 1997; revised manuscript received 9 December 1997!

Within generalized linear response theory, an expression for the dielectric function is derived that is con-
sistent with standard approaches to the electrical dc conductivity. Explicit results are given for the first moment
Born approximation. Some exact relations as well as the limiting behavior at small values of wave number and
frequency are investigated.@S1063-651X~98!06504-0#

PACS number~s!: 52.25.Mq
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I. INTRODUCTION

The dielectric functione(kW ,v) describing the response o
a charged particle system to an external, time and space
pendent electric field~wave vectorkW , frequencyv) is related
to various phenomena such as electric conductivity and
tical absorption of light. In particular, it is an importan
quantity for plasma diagnostics, see, e.g., recent applicat
to determine the parameters of high-density plasmas
duced by picosecond lasers@1#. However, the application o
widely used simplified expressions for the dielectric functi
is questionable in the case of nonideal plasmas.

As is well known, the electrical dc conductivity of
charged particle system should be obtained as a limiting c
of the dielectric function. However, at present both quantit
are treated by different theories. A standard approach to
electrical dc conductivity is given by the Chapman-Ensk
approach@2#. In dense plasmas, where many-particle effe
are of importance, linear response theory has been wo
out to relate the conductivity to equilibrium correlation fun
tions which can be evaluated using the method of thermo
namic Green functions, see@3#. This way it is possible to
derive results for the conductivity of partially ionized pla
mas not only on the level of ordinary kinetic theory, but al
including two-particle nonequilibrium correlations@4#.

On the other hand, the dielectric function can also
expressed in terms of equilibrium correlation functions. N
glecting collisions, the well-known random phase appro
mation ~RPA, see also below! is obtained where the contri
bution of charged particles with massm to the imaginary
part of the dielectric function is proportional t
vk23 exp@2mv2/(2kBTk2)#. Obviously, a systematic pertur
bation expansion to include collision effects is difficult
carry out near the singular pointkW50W, v50. Different im-
provements are known to go beyond the well-known R
result. In the static limit, local field corrections have be
discussed extensively@5#, and the dynamical behavior of th
corrections to the RPA in the long-wavelength limit was
vestigated in time-dependent mean field theory neglec
damping effects@6#, see also@7# for the strong coupling case
At arbitrary kW andv, approximations are made on the ba
of sum rules for the lowest moments@8#. However, these
approximations cannot give an unambiguous expression
e(kW ,v) in the entire (kW ,v) space.

We shall give here a unified approach to the dielec
571063-651X/98/57~4!/4673~11!/$15.00
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function as well as the dc conductivity, which is consiste
with the Chapman-Enskog approach to dc conductivity a
allows for a perturbation expansion also in the region
small kW andv. In the following Sec. II the method of gen
eralized linear response@9# is presented which can be used
find very general relations between a dissipative quantity
correlation functions describing the dynamical behavior
fluctuations in equilibrium. A special expression for the d
electric function that is related to the use of the force-fo
correlation function in evaluating the dc conductivity
given.

Different methods can be applied to evaluate equilibriu
correlation functions for nonideal plasmas. We shall use p
turbation theory to evaluate thermodynamic Green functi
@10#. Results in the Born approximation are given in Sec.
Within a more sophisticated approach, partial summati
could be performed using diagram techniques, as show
Ref. @3#. To evaluate equilibrium correlation functions i
strongly coupled plasmas, a promising alternative is given
molecular dynamics simulations. It is expected that relia
results for the dielectric function for dense systems by qu
tum molecular dynamics will be available in the near futu
Work in this direction is in progress but will not be discuss
in this paper.

To illustrate the general approach, explicit results for t
dielectric function in the first moment Born approximatio
are given for hydrogen plasmas in Sec. IV. Sum rules as w
as the dc conductivity are discussed. The simple approxi
tion considered here will be improved in a subsequent pa
@11#, where a four-moment approach to two-component pl
mas is investigated.

II. DIELECTRIC FUNCTION WITHIN GENERALIZED
LINEAR RESPONSE THEORY

We consider a charged particle system consisting of
ferent components with massesmc and chargesec . In the
following we shall use the indexc not only to denote specie
~e.g., electrone, ion i ) but also to describe further interna
degrees of freedom such as spin.

The charged particle system is investigated under
influence of an external potential Uext(rW,t)
5ei (kW•rW2vt)Uext(kW ,v)1c.c. The total HamiltonianH tot(t)
5H1Hext(t) contains the system HamiltonianH and the
interaction with the external potential
4673 © 1998 The American Physical Society
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Hext~ t !5Uext~kW ,v!e2 ivt(
c,p

ecnp,2k
c 1c.c., ~1!

where

np,k
c 5~np,2k

c !†5ac,p2k/2
† ac,p1k/2 ~2!

is the Wigner transform of the single-particle density giv
in terms of creation and annihilation operators in the mom
tum representation,c indicating species~such as electrone,
ion i ) and spin.

Under the influence of the external potential, a tim
dependent charge density

1

V0
(

c,p,k8
ec^dnp,k8

c & teikW8•rW1c.c.

5
1

V0
(
c,p

ecd f c~pW ;kW ,v!ei ~kW•rW2vt !1c.c. ~3!

will be induced. Here,dnp,k8
c

5np,k8
c

2Tr$np,k8
c r0% denotes

the deviation from equilibrium, where the equilibrium stat
tical operator is given by

r05

expS 2bH1b(
c

mcNcD
Tr expS 2bH1b(

c
mcNcD . ~4!

The averagê ¯ & t5Tr$¯ r(t)% has to be performed with
the nonequilibrium statistical operatorr(t), which is derived
in linear response with respect to the external potentia
Appendix A. For homogeneous and isotropic systems,
find simple algebraic relations between the different mo
(kW ,v) of the external potentialUext(kW ,v) and the induced
single-particle distribution

d f c~pW ;kW ,v!5eivt^dnp,k
c & t, ~5!

which allows one to introduce the dielectric functio
e(k,v), the electric conductivitys(k,v), and the polariza-
tion function P(k,v). From standard electrodynamics w
have

e~k,v!511
i

e0v
s~k,v!512

1

e0k2
P~k,v! ~6!

and

P~k,v!5
1

V0
(
c,p

ecd f c~pW ;kW ,v!
1

Ueff~k,v!
, ~7!

where the polarization function is defined with respect to
effective potential

Ueff~k,v!5Uext~k,v!/e~k,v!. ~8!

Using the equation of continuity

v(
p

d f c~pW ;kW ,v!5
k

mc
(

p
\pzd f c~pW ;kW ,v!, ~9!
-

-

n
e
s

e

where thez direction is parallel tokW , kW5keW z , we can also
express

P~k,v!5
k

v

1

V0
(
c,p

ec

mc
\pzd f c~pW ;kW ,v!

1

Ueff~k,v!

5
k

v
^Jk&

teivt
1

Ueff~k,v!
~10!

with the current density operator

Jk5
1

V0
(
c,p

ec

mc
\pznp,k

c , ~11!

V0 is the normalization volume.
The main problem in evaluating the mean value^Jk&

t, Eq.
~11!, of the current density is the determination ofr(t). In
linear response theory where the external potential is con
ered to be weak, the statistical operatorr(t) up to first order
in Uext(k,v) can be given explicitly, see Appendix A. A
important ingredient to generalized linear response theor
that a set of relevant observables can be introduced wh
mean values characterize the nonequilibrium state of the
tem. In this paper, we shall consider the current densityJk ,
Eq. ~11!, as a relevant observable. This observable co
sponds to the first moment of the single-particle distribut
function. The extension to more general sets of relevant
servables such as higher moments of the distribution fu
tion is discussed in Appendix A.

Based on this first moment approach, we have the follo
ing expression for the polarization function:

P~k,v!52e~k,v!
ik2bV0

v

~Jk ;Jk!
2

MJJ
, ~12!

with

MJJ52 iv~Jk ;Jk!1^J̇k ; J̇k&v1 ih

2
^J̇k ;Jk&v1 ih

^Jk ;Jk&v1 ih
^Jk ; J̇k&v1 ih . ~13!

The equilibrium correlation functions are defined as

~A;B!5~B†;A†!5
1

bE0

b

dt Tr@A~2 i\t!B†r0#,

~14!

^A;B&z5E
0

`

dteizt
„A~ t !;B…,

with A(t)5exp(iHt/\)A exp(2iHt/\), andȦ5 i @H,A#/\.
Before evaluating the polarization function~12! for a two-

component plasma, we shall first discuss its relation to
Kubo formula and afterwards the significance of the diel
tric function e(k,v) occurring in Eq.~12!.

Applying partial integration
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57 4675DIELECTRIC FUNCTION AND ELECTRICAL dc . . .
^A;B&z5
i

z
@~A;B!1^Ȧ;B&z#5

i

z
@~A;B!2^A;Ḃ&z#,

~15!

the time derivatives in the time correlation functions of e
pression~13! can be eliminated,

MJJ52h~Jk ;Jk!1~ J̇k ;Jk!1~Jk ;Jk!
2/^Jk ;Jk&v1 ih .

~16!

Furthermore, we use the property

~Ȧ;B!5
i

\b
Tr$@A,B†#r0% ~17!

@to prove this, perform the integral in the definition~14!#, so
that (J̇k ;Jk)5 i Tr$@Jk ,J2k#r0%/(\b)50. In conclusion, ex-
pression~12! for the polarization function can be rewritten a

P~k,v!52e~k,v!
ik2bV0

v

~Jk ;Jk!^Jk ;Jk&v1 ih

~Jk ;Jk!2h^Jk ;Jk&v1 ih
.

~18!

Performing the limith→0, we obtain for finite values of the
correlation function̂ Jk ;Jk&v1 ih the simple result

P~k,v!52e~k,v!
ik2bV0

v
^Jk ;Jk&v1 ih , ~19!

which is denoted as the Kubo formula for the polarizati
function. Similarly, this result can also be obtained fro
more general sets of observables. In particular, the K
formula can be derived if the set of relevant observable
empty, see Appendix A, Eq.~A15!. Different approaches
based on different sets of relevant observables are form
equivalent as long as no approximations in evaluating
correlation functions are made.

However, expressions~12! and~19! are differently suited
to perform perturbation expansions. For this we consider
dc conductivity

s5 lim
v→0

lim
k→0

s~k,v!5 i lim
v→0

lim
k→0

v

k2
P~k,v!. ~20!

We compare the correlation function

bV0^J0 ;J0& ih ~21!

in the Kubo formula~19! with the expression

bV0

~J0 ;J0!2

^ J̇0 ; J̇0& ih2^J̇0 ;J0& ih^J0 ;J0& ih
21^J0 ; J̇0& ih

, ~22!

arising in the corresponding formula~12! @as discussed at th
end of this section, the prefactore(k,v) disappears if only
irreducible contributions of the correlation functions are co
sidered#. It is evident that perturbation theory cannot be a
plied to expression~21! because in zeroth order this expre
sion is already diverging. In contrast, expression~22! allows
for a perturbative expansion. The denominator vanishe
zeroth order in the interaction. The correlation functi

^J̇0 ; J̇0& ih gives a contribution already of second order in t
-

o
is

lly
e

e

-
-

in

interaction, whereas the remaining part contributes only fr
fourth order on. For instance, in the Born approximation
Faber-Ziman result for the electric conductivity is obtain
@3#. The expressions21;^J̇0 ; J̇0& ih is also known as the
force-force correlation function expression for the resistivi
More precisely, the resistivity should be given in terms
stochastic forces which are related to the second term in
denominator of Eq.~22!, see also Eq.~A12! in Appendix A.
The applicability of correlation functions for the invers
transport coefficients has been widely discussed, for a rev
see Ref.@9#. The approach to the dielectric function given
the present paper is based on the choice~11! for the set of
relevant observables and may be considered as the gen
zation of the force-force correlation function method for t
electric resistivity to the dielectric function. Possible exte
sions of the set of relevant observables have been inv
gated in evaluating the dc conductivity in Ref.@3# and will
be considered in evaluating the dielectric function in a for
coming paper@11#.

The origin of the dielectric functione(k,v) in Eq. ~12! is
due to the definition of the polarization function~screened
susceptibility! with respect to the effective potentia
Ueff(k,v), Eq. ~8!. For instance, the Kubo formula~19! can
be rewritten as

1

e~k,v!
2152 i

bV0

e0v
^Jk ;Jk&v1 ih . ~23!

A similar relation can also be found for Eq.~12!.
On the other hand, the occurrence of the dielectric fu

tion in the expressions for the polarization function has
simple consequence if the correlation functions are evalua
by standard many particle methods such as perturba
theory for thermodynamic Green functions. In this conte
the correlation functions containinge(k,v)Jk are obtained
from irreducible diagrams to Green functions containingJk ,
which cannot be separated into two pieces by cutting a sin
interaction line.

III. EVALUATION OF CORRELATION FUNCTIONS

We apply the method developed above to two-compon
plasmas consisting of electrons~massme , chargeee , den-
sity ne) and ions ~massmi , chargeei , density ni) with
eene1eini50 for a charge-neutral plasma. The Hamiltoni
is given by

H5(
c,p

Ep
cac,p

† ac,p

1
1

2 (
cc8,pp8q

Vcc8~q!ac,p2q
† ac8,p81q

† ac8,p8ac,p , ~24!

where Ep
c5\2p2/2mc denotes the kinetic energy an

Vcc8(q)5ecec8 /(e0V0q2) describes the Coulomb interac
tion between electrons and ions as well as the electr
electron and ion-ion interaction.

Within the generalized linear response approach, the
larization function is given in terms of correlation function
The correlation functions occurring in Eq.~12! contain the
operatorsnp,k

c 5ac,p2k/2
† ac,p1k/2 andṅp,k

c 52( i\pzk/mc)np,k
c
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1vp,k
c , where the first term arises from the kinetic ener

and gives a contribution even if the collisions in the plas
are neglected, i.e., to the RPA result. The second term

vp,k
c 5

i

\ (
c8,p8,q

Vcc8~q!@ac,p2k/22q
† ac8,p81q

† ac8,p8ac,p1k/2

2ac,p2k/2
† ac8,p81q

† ac8,p8ac,p1k/21q# ~25!

contains the interactionVcc8(q). It has to be taken into ac
count if collisions are included.

To evaluate the correlation functions, we perform a p
turbation expansion with respect to the interactionVcc8(q).
Within a quantum statistical approach, the correlation fu
tions are related to Green functions which can be evalua
by diagram techniques. This has been discussed in deta
the case of the static electric conductivity@3# and will not be
detailed here any further. Instead, we will consider only
lowest orders of perturbation theory, see Appendix B.

As shown in Appendix B, evaluating the polarizatio
function to zeroth order, the RPA result for the dielect
function is reproduced. Expanding up to second order w
respect toVcc8(q),

P~k,v!52 ibV0

k2

v
^Jk ;Jk&v1 ih

~0!

3F 11 (
cd,pp8

\2

V0
2

eced

mcmd
pzpz8

^vp,k
c ;vp8,k

d &v1 ih
~0!

~Jk ;Jk!
~0!

3S 1

h2 iv1 i
\

md

pz8k

1
1

h2 iv1 i
\

mc
pzk

2
^Jk ;Jk&v1 ih

~0!

~Jk ;Jk!
~0! D G 21

, ~26!

collisions are included. The correlation function
^vp,k

c ;vp8,k
d &v1 ih are of at least second order in the intera

tion Vcc8(q). Evaluating the correlation function containin
creation and annihilation operators, cf. Eq.~25!, to zeroth
order in the interaction, the collisions are taken into acco
in the Born approximation. Note that the prefactore(k,v)
disappears if only irreducible diagrams are considered
evaluating the correlation functions.
a

-

-
d

for

e

h

-

t

in

In the nondegenerate case the following expression is
tained:

P~k,v!52b(
c

ec
2nc@11zcD~zc!#

3F 12 i
v

k2

ee
2ei

2

~4pe0!2
neni

mei
1/2

~kBT!5/2

2~2p!1/2

(
c

ec
2nc /mc

3E
0

`

dpe2p2S ln
l21

l11
1

2

l11DW~p!G21

, ~27!

with

W~p!5
2

3
pS ee

me
2

ei

mi
D 2 (

c
ec

2nc@11zcD~zc!#

(
c

ec
2nc /mc

2
Mei

1/2

mei
1/2 S ee

me
2

ei

mi
D E

21

1

dccFeeDS zei2Ami

me
cpD

1eiDS zei1Ame

mi
cpD G . ~28!

Here, zei5 v/kAMei/2kBT, zc5 v/kAmc/2kBT, l(p)
5(\2k2)/(4meikBTp2)11, Mei5me1mi , mei5memi /
Mei , and

D~z!5
1

Ap
E

2`

`

e2x2 dx

x2z2 ih
5 iApe2z2

@11erf~ iz!#

~29!

denotes the Dawson integral. Equation~27! is an analytic
expression for the polarization function which can be eva
ated in the entire (kW ,v) space. Note that a statically screen
potential was used in Eq.~25! to obtain a convergent colli-
sion integral, the screening parameter is given
k25(cec

2nc /(e0kBT). From Eq.~27! it can be seen imme
diately that the RPA result is obtained in the limit of vanis
ing interactions,W(p)50.

IV. RESULTS FOR HYDROGEN PLASMAS

Expression~27! for the polarization function is simplified
for a system consisting of protons and electrons, wh
ei52ee , ni5ne , andmi /me51836:
e~k,v!511
e2n

e0kBTk2
@21zeD~ze!1ziD~zi !#F12 i

v

k2

e4

~4pe0!2
n

mei
1/2

~kBT!5/2
2~2p!1/2E

0

`

dpe2p2S ln
l21

l11
1

2

l11D
3H 2

3
p@21zeD~ze!1ziD~zi !#2S Mei

mei
D 1/2E

21

1

dccFDS zei2Ami

me
cpD 2DS zei1Ame

mi
cpD G J G21

. ~30!
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We first discuss the limiting case of smallk. For
k!vAme /(2kBT) we use the expansion

D~z!5 iApe2z2
2

1

z
2

1

2z3 6¯ ~31!

so that after expansion also with respect tocp/zei we have

e~0,v!512
vpl

2

v21 iv/t
~32!

with vpl
2 5e2n/(e0mei) and

t5
~4pe0!2

e4

~kBT!3/2mei
1/2

n

3

4~2p!1/2

3F E
0

`

dppe2p2S ln
l21

l11
1

2

l11D G21

. ~33!

According to Eq.~6!, the dc conductivity

s~0,v→0!5vpl
2 e0t ~34!

is obtained, which coincides with the Faber-Ziman formu
at finite temperatures@3#.

On the other hand, in the limiting case of smallv we use
the expansion

D~z!5 iApe2z2
22z1

4

3
z36¯ ~35!

for v!A2kBT/mik and obtain

lim
k→0

lim
v→0

e~k,v!511
k2d

2 iv1dk2S 11 i
v

2k
A pmi

2kBTD ,

~36!

with

d2152
e4

~4pe0!2
n

4~2p!1/2mei
1/2

~kBT!5/2 E
0

` dp

p
e2p2

3S ln
l21

l11
1

2

l11D . ~37!

Here, in evaluating the last expression of Eq.~30!, also
zei1(me /mi)

1/2cp is considered as a small quantity, where
zei2(mi /me)

1/2cp is large in the region of relevantp. For
small valuesk,2A2kBT/(pmi)/d, the second term in the
numerator of Eq.~36! can be neglected, and the diffusio
type form ofe(k,v) is obtained, see@12#.

As an example, a dense plasma is considered with par
eter valuesT550 eV andne53.231023 cm23. Such param-
eter values have been reported recently in laser produ
high-density plasmas by Sauerbreyet al., see@1#. We will
use Rydberg units so thatT53.68 in Ry andne50.0474 in
aB

23 . At these parameter values, the plasma frequenc
obtained asvpl51.54, and the screening parameter
k50.805.
s

m-

ed

is
s

First we discuss the dependence of the dielectric func
on frequency for different values ofk, see Figs. 1–4. For
large values ofk our result for the dielectric function coin
cides with the RPA result. At decreasingk strong deviations
are observed.

Both the RPA expression as well as the expression~30!
for the dielectric function fulfill important relations such a
the Kramers-Kronig relation and the condition of tot
screening. The validity of the sum rule

E
0

`

v Im e~k,v!dv5
p

2
vpl

2 ~38!

is checked by numerical integration. The RPA result co
cides with the exact valuevpl

2 p/253.74 to be compared with
expression~30! which gives 3.74 atk51, 3.75 atk50.1,
3.71 atk50.01, and 3.74 atk50.001. The small deviations
are possibly due to numerical accuracy.

To investigate the behavior at smallk, we give a log-log
plot of Im e(k,v) as a function ofv for different valuesk in
Fig. 5. Forv.A2kBT/mek53.84k the Drude-like behavior
~32! is clearly seen, witht58.36.

Considering the limit of smallv, a log-log plot of
Im e(k,v) as a function ofk for different valuesv is shown

FIG. 1. e(k,v) as a function ofv ~in Ry/\! at k51/aB for a
hydrogen plasma,ne53.2 1023 cm23, T550 eV. Upper panel,
Re e; lower panel, Ime; broken line, RPA; full line, first moment
Born approximation.
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4678 57G. RÖPKE
in Fig. 6. The diffusion behavior ~36! occurs for
k,A2kBT/(pmi)50.00732 atk.Ami /(2kBT)v511.17v
with d513.8. Altogether the numerical evaluation of th
general expression~30! for the dielectric function confirms
the validity of the simple limiting formulas~32! and ~36!.

In this paper we have focused on discussion of the pr
erties only ofe(k,v). Related quantities such ase21(k,v)
will be investigated in a forthcoming paper@11#. The param-
eter values for density and temperature can be extende
other nondegenerate plasmas such as ordinary labora
plasmas or the solar plasma. This has been done with re
showing the same qualitative behavior of the express
~30!, but at shifted values ofk andv.

V. CONCLUSIONS

An expression for the dielectric function of Coulomb sy
tems is derived that is consistent with the Chapman-Ens
approach to dc conductivity. For a two-component plasm
explicit calculations have been performed in the lowest m
ment approach. In the Born approximation, expressions
given that allow the determination ofe(k,v) in an analytical
way. Within numerical accuracy it is shown that general
lations such as sum rules are fulfilled. The dc conductivity
obtained in agreement with the Ziman-Faber result.

We performed exploratory calculations to illustrate ho
the generalized linear response approach works. Obvio

FIG. 2. The same as Fig. 1 fork50.1/aB .
-

to
ry
lts
n

g
,
-
re

-
s

ly

an improvement of the results can be obtained if~i! the Born
approximation is improved including higher orders of pertu
bation theory, and~ii ! higher moments of the single-particl
distribution are taken into account. Both points have be
discussed for the limiting case of dc conductivity@3#, where
a virial expansion of the inverse conductivity was given.

A four-moment approach will be presented in a sub
quent paper@11#, where also the comparison with the Kub
approach and computer simulations are discussed. Within
approach given here it is also possible to treat the degene
case. Work in this direction is in progress.
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APPENDIX A: GENERALIZED LINEAR RESPONSE
THEORY

Generalized linear response theory has been consider
different works@13#, see@9# for a recent presentation. W
give here briefly the main ideas to construct the nonequi
rium statistical operatorr(t)5r rel(t)1r irrel(t) using the
density matrix approach@14#. Characterizing the nonequilib
rium state of the system by the mean values^Bn(rW)& t of a set
of relevant observables$Bn(rW)%, from the maximum entropy
principle the generalized Gibbs state

FIG. 3. The same as Fig. 1 fork50.01/aB .
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r rel~ t !5expF2F~ t !2bH1b(
c

mcNc

1b(
n
E d3rfn~rW,t !Bn~rW !G ~A1!

follows, whereF(t) is the Massieu-Planck function. Th

FIG. 4. The same as Fig. 1 fork50.001/aB .

FIG. 5. Im e(k,v) as function ofv for different k.
thermodynamic parameters~Lagrange multipliers! fn(rW,t)
are determined by the self-consistency conditions

Tr$Bn~rW !r rel~ t !%5^Bn~rW !& t ~A2!

and will be evaluated within linear response theory below
The relevant statistical operator~A1! does not solve the

von Neumann equation, but it can serve to formulate
correct boundary conditions to obtain the retarded solution
the von Neumann equation. Using Abel’s theorem, the irr
evant part of the nonequilibrium statistical operator@9# is
found with the help of the time evolution operatorU(t,t8),

i\
]

]t
U~ t,t8!5H tot~ t !U~ t,t8!, U~ t8,t8!51 , ~A3!

as

r irrel~ t !52E
2`

t

dt8e2h~ t2t8!U~ t,t8!

3H i

\
@H tot~ t8!,r rel~ t8!#1

]

]t8
r rel~ t8!J U~ t8,t !,

~A4!

where the limith→0 has to be taken after the thermod
namic limit. The self-consistency conditions~A2! which de-
termine the Lagrange multipliers take the form

Tr$Bn~rW !r irrel~ t !%50. ~A5!

For a weak external fieldUext, the system remains nea
thermal equilibrium described byr0 @Eq. ~4!#. Expanding the
nonequilibrium statistical operator up to first order inUext
and fn(rW,t), it is convenient to use the Fourier represen
tion so that

E d3rfn~rW,t !Bn~rW !5fn~kW ,v!e2 ivtBn
†1c.c. ~A6!

with

FIG. 6. Im e(k,v) as a function ofk for v50.000 001 Ry/\.
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fn~rW,t !5ei ~kW•rW2vt !fn~kW ,v!, Bn5E d3rBn~rW !e2 ikW•rW.

~A7!

Up to first order, the contributions tor(t) are

r rel~ t !5r01e2 ivtE
0

b

dt (
n

Bn
†~ i\t!fn~kW ,v!r01c.c.

~A8!

and, applying the Kubo identity

@A,r0#5E
0

b

dte2tH@H,A#etHr0 , ~A9!

we find

r irrel~ t !52E
2`

t

dt8e2h~ t2t8!e2 ivt8E
0

b

dt

3H(
c,p

ecṅp,2k
c ~ t82t1 i\t!Uext~kW ,v!
e
en

s.
o

re
1(
n

@Ḃn
†~ t82t1 i\t!2 ivBn

†

3~ t82t1 i\t!#fn~kW ,v!J r01c.c. ~A10!

Inserting this result in the self-consistency conditions~A5!
we get the response equations

2^Bm ;A&v1 ihUext~kW ,v!5^Bm ;C&v1 ih ~A11!

with the correlation functions defined by Eq.~14!,
A5 ikV0Jk5(c,pecṅp,k

c , andC5(n@Ḃn1 ivBn#fn* (kW ,v).
To make the relation between the response equat

~A11! and the Boltzmann equation more close, see@3#, we
introduce the ‘‘stochastic’’ part of forces applying parti
integrations according to Eq.~15!, so that Eq.~A11! can be
rewritten as
2 ikV0~Bm ;Jk!Ueff~k,v!5
~Bm ;Jk!1^Ḃm ;Jk&v1 ih2^Ḃm ;Jk&v1 ih

^Bm ;Jk&v1 ih
^Bm ;C&v1 ih

5~Bm ;C!1K F Ḃm2
^Ḃm ;Jk&v1 ih

^Bm ;Jk&v1 ih
BmG ;FC2

^Bm ;C&v1 ih

^Bm ;Jk&v1 ih
JkG L

v1 ih

. ~A12!
-

s
e

We find the following form for the response equations:

2 ikV0Mm0Uext~k,v!5(
n

Mmnfn~k,v! ~A13!

with Mm05(Bm ;Jk) and

Mmn5~Bm ;@Ḃn1 ivBn# !

1K F Ḃm2
^Ḃm ;Jk&v1 ih

^Bm ;Jk&v1 ih
BmG ;@Ḃn1 ivBn#L

v1 ih

.

~A14!

The system of equations~A13! can be solved applying th
Cramers rule. Then, the response parameters are repres
as a ratio of two determinants.

With the solutionsfn , the explicit form ofr(t) is known,
and we can evaluate mean values of arbitrary observable
particular, we are interested in the evaluation
^Jk&

t exp(ivt) to calculate the polarization function~10! us-
ing Eqs.~A8! and ~A10!,

^Jk&
teivt5b(

n
$~Jk ;Bn!2^Jk ;@Ḃn1 ivBn#&v1 ih%fn~kW ,v!

2 ikV0b^Jk ;Jk&v1 ihUext~kW ,v!. ~A15!

If Jk can be represented by a linear combination of the
ted

In
f

l-

evant observables$Bn%, we can directly use the self
consistency conditions~A2! and have

^Jk&
teivt5Tr@Jkr rel~ t !#eivt. ~A16!

Comparing with Eq.~A15! we see that the remaining term
on the right-hand side of Eq.~A15! compensate due to th
response equations~A11!. After expandingr rel(t) up to first
order infn(kW ,v), Eq. ~A8!, we have

^Jk&
teivt5b(

n
~Jk ;Bn!fn~kW ,v!. ~A17!

Inserting the solutions forfn in the form of determinants, we
get for the polarization function~10! with M0n(k,v)
5(Jk ;Bn) the result

P~k,v!5 i e~k,v!bV0

k2

v

3U 0 M0n~k,v!

Mm0~k,v! Mmn~k,v!
UY uMmn~k,v!u.

~A18!

Specifying to only one relevant observableBn5Jk , the re-
sult ~12! for the polarization function follows.
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APPENDIX B: EVALUATION OF THE COLLISION TERM
IN BORN APPROXIMATION

Let us first consider the lowest order of perturbati
theory where the correlation functions are immediat
evaluated using Wick’s theorem. We find

~np,k
d ;np8,k

c
!5 f̂ p,k

c dpp8dcd ,
~B1!

^np,k
d ;np8,k

c &v1 ih5~h2 iv1 i\pzk/mc!
21 f̂ p,k

c dpp8dcd ,

with

f̂ p,k
c 5~b\2pzk/mc!

21~ f p2k/2
c 2 f p1k/2

c !. ~B2!

Note that limk→0 f̂ p,k
c 5 f p

c5$exp@b(Ep
c2mc)#11%21. In the

classical limit where the Fermi function can be replaced
the Maxwell distribution, we have to lowest order in th
Coulomb interaction

~Jk ;Jk!
~0!5

kBT

V0
(

c

ec
2

mc
nc , ~B3!

^Jk ;Jk&v1 ih
~0! 52 i

v

k2

1

V0
(

c
ec

2nc@11zcD~zc!#, ~B4!

with zc5 v/kAmc/2kBT and the Dawson integral

D~z!5
1

Ap
E

2`

`

e2x2 dx

x2z2 ih
. ~B5!

Furthermore, we have

^ J̇k ;Jk&v1 ih
~0! 52

kBT

V0
(

c

ec
2

mc
nc

2
v2

k2

1

V0
(

c
ec

2nc@11zcD~zc!#

52^Jk ; J̇k&v1 ih
~0! , ~B6!

^J̇k ; J̇k&v1 ih
~0! 52 iv

kBT

V0
(

c

ec
2

mc
nc

2 i
v3

k2

1

V0
(

c
ec

2nc@11zcD~zc!#, ~B7!
y

y

so that from Eq.~12! the random phase approximatio
~RPA!

P~0!~k,v!52b(
c

ec
2nc@11zcD~zc!# ~B8!

is obtained. The prefactore(k,v) disappears taking into ac
count only irreducible diagrams forP(k,v). The corre-
sponding RPA dielectric function~6! describes the collision-
less plasma.

To include collisions, we have to consider higher orde
of the interaction. In the numerator of Eq.~12!, the higher
order expansion for (Jk ;Jk) leads to the replacement of th
occupation numbersf p

c for the free fermion gas by the occu
pation numbers in an interacting fermion gas. These s
energy corrections in the Born approximation can be giv
as a shift of the single-particle energies and can be repla
by a shift of the chemical potential, see@3#. They do not
describe collision effects and will not be considered here

Collision terms arise from the time correlation functio
such aŝ J̇k ; J̇k&v1 ih in Eq. ~13!. The force termJ̇k already
contains the interactionVcc8(q) according to Eq.~25!, so
that a collision term in the Born approximation is obtained
the corresponding correlation function containing the c
ation and annihilation operatorsa†,a is evaluated in zeroth
order with respect to the interaction. To extract also the c
lision terms in the Born approximation from time correlatio
functions such aŝJk ; J̇k&v1 ih , we use the relations

^np,k
c ;vp8,k

d &v1 ih5~h2 iv1 i\pzk/mc!
21

3@~np,k
c ;vp8,k

d
!1^vp,k

c ;vp8,k
d &v1 ih#,

~B9!

^vp,k
c ;np8,k

d &v1 ih5~h2 iv1 i\pz8k/md!21

3@~vp,k
c ;np8,k

d
!2^vp,k

c ;vp8,k
d &v1 ih#,

~B10!

which can be proven by partial integration~15!. Collecting
all terms of the form^vp,k

c ;vp8,k
d &v1 ih which contribute to

collisions in the Born approximation, we find from Eq.~13!

MJJ5
@~Jk ;Jk!

~0!#2

^Jk ;Jk&v1 ih
~0!

1 (
cd,pp8

\2

V0
2

eced

mcmd
pzpz8^vp,k

c ;vp8,k
d &v1 ih

3H 211
~Jk ;Jk!

~0!

^Jk ;Jk&v1 ih
~0! F 1

h2 iv1 i\pz8k/md

1
1

h2 iv1 i\pzk/mc
G J 5MJJ

~0!1MJJ
~1! . ~B11!
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Introducing according to Eqs.~B3! and ~B4!

R5
~Jk ;Jk!

~0!

^Jk ;Jk&v1 ih
~0!

5 ikBT
k2

v

(cec
2nc /mc

(cec
2nc@11zcD~zc!#

,

~B12!

we have

MJJ
~0!5R~Jk ;Jk!

~0!, ~B13!
MJJ
~1!5

\2

V0
2 (

cd,pl

eced

mcmd
pzl z^vp,k

c ;v l ,k
d &v1 ih

3H 211RF 1

h2 iv1 i\pzk/mc

1
1

h2 iv1 i\ l zk/md
G J . ~B14!

Dropping single-particle exchange terms that can be
tified for the Coulomb interaction in the low-density limi
we find the collision term in the Born approximation by u
ing Wick’s theorem,
r

^vp,k
c ;vp8,k

d &v1 ih5
p

\ (
c8p9q

exp~2b\v!21

b\v
Vcc8~q! f p91q

c8 ~12 f p9
c8 !

3$ f p2k/22q
c ~12 f p1k/2

c !d~Ep2k/22q
c 1Ep91q

c8 2Ep1k/2
c 2Ep9

c81\v!

3@Vcc8~2q!dcd~dp8,p2q2dp8,p!1Vc8c~k1q!dc8d~dp8,p91k/21q2dp8,p92k/2!#

2 f p2k/2
c ~12 f p1k/21q

c !d~Ep2k/2
c 1Ep91q

c8 2Ep1k/21q
c 2Ep9

c81\v!

3@Vcc8~2q!dcd~dp8,p2dp8,p1q!1Vc8c~k1q!dc8d~dp8,p91k/21q2dp8,p92k/2!#%. ~B15!

For smallk, v we have with Eqs.~B14! and ~B15!

MJJ
~1!52

p\

V0
2 (

lpq
Vei

2 ~q! f p
ef l

id~Ep1q
e 1El 2q

i 2Ep
e2El

i !qzS ee

me
2

ei

mi
D H S ee

me
pz1

ei

mi
l zD

22RS pz

i\kpz /me2 iv1h

ee

me
1

l z

i\klz /mi2 iv1h

ei

mi
D J . ~B16!

The further evaluation is done introducing total and relative momentaPW 5pW 1 lW, pW 85(mipW 2melW)/Mei , pW 95pW 81qW ,
Mei5me1mi , mei

215me
211mi

21 . Inserting the distribution functionsf p
c5nc(2p\2/mckBT)3/2exp@2\2p2/(2mckBT)# and the

screened potentialVei(q)5eeei /„e0V0(q21k2)…, we obtain

MJJ
~1!52

\p

V0

ee
2ei

2

e0
2

neS 2p\2

mekBTD 3/2

ni S 2p\2

mikBTD 3/2 1

~2p!9

2mei

\2 E d3PE d3p8E d3p9

3e2
\2P2

2MeikBTe2
\2p82

2meikBTd~p822p92!
1

@~pW 82pW 9!21k2#2
~pz92pz8!S ee

me
2

ei

mi
D

3H pz8S ee

me
2

ei

mi
D22R

Meiv

i\2k2S ee

Pz1
Mei

me
pz82

Meiv

\k
2 ih

1
ei

Pz2
Mei

mi
pz82

Meiv

\k
2 ihD J . ~B17!

Furthermore, we introduce dimensionless variables\P(2MeikBT)1/2, \p8(2meikBT)1/2, l5(\2k2)/(4meikBTp82)11,
spherical coordinatespW 85„p8(12c2)1/2,0,p8c…, pW 95„p9(12z2)1/2 cosf,p9(12z2)1/2 sinf,p9z…, and perform the integral ove
f according to

E
0

2p

df
1

@l2cz2A12c2A12z2 cosf#2
52p

l2cz

~l2211c222lcz1z2!3/2
~B18!

so that
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MJJ
~1!5

1

V0
neni

ee
2ei

2

e0
2 S mei

~2p!3kBT
D 1/2

1

2E0

` 1

p8
dp8e2p82E

21

1

dcE
21

1

dz
1

p3/2E d3Pe2P2 l2cz

~l2211c222lcz1z2!3/2
~z2c!

3H p82cS ee

me
2

ei

mi
D 2

1 iRp8S ee

me
2

ei

mi
D v

kBTk2AMei

meiF ee

Pz1Ami

me
p8c2

v

k
A Mei

2kBT

1
ei

Pz2Ame

mi
p8c2

v

k
A Mei

2kBT
G J .

~B19!

Now, the integrals overz andP can be performed. Using

E
21

1

dz
l2cz

~l2211c222lcz1z2!3/2
~z2c!5cS ln

l21

l11
1

2

l11D , ~B20!

and the definition of the Dawson integral~29! to perform the integral overPz , we finally find after integrating the transvers
components ofPW

MJJ
~1!5

1

V0
neni

ee
2ei

2

e0
2 S mei

2kBTD 1/2 1

4p3/2E0

`

dpe2p2S ln
l21

l11
1

2

l11D H 2

3
pS ee

me
2

ei

mi
D 2

1 iRS ee

me
2

ei

mi
D v

kBTk2
AMei

mei
E

21

1

dccFeeDS zei2Ami

me
cpD 1eiDS zei1Ame

mi
cpD G J ~B21!

with zei5 v/kAMei/2kBT. Together with Eqs.~B13! and ~B3!, this result can be inserted in expression~12! to evaluate
P(k,v).
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